Genetic Testing of Children with Steroid Resistant Nephrotic Syndrome

Fang Wang
Peking University First Hospital
Nephrotic Syndrome (NS)

- Clinical manifestations
 massive proteinuria, hypoalbuminemia, edema and hyperlipidemia
- The most common glomerular disease of childhood
- An incidence in an unselected cohort of children approximately 2/100,000
- Initial treatment: steroid

J Paediatr Child Health, 2007
Steroid resistant Nephrotic Syndrome (SRNS)

- A clinical entity
- Represents approximately 22% of cases of idiopathic childhood nephrotic syndrome
 - Progression to end-stage renal disease
 - 70-75% will have biopsy-proven focal segmental glomerulosclerosis (FSGS)

Advances in Chronic Kidney Disease, 2011
Steroid resistant Nephrotic Syndrome (SRNS)

- Represents structural changes in the glomerulus or, more specifically, the podocyte
- the slit diaphragm
Morphological structure was described for several decades

“Zipper-like”

Molecular constitute?

Until 1998

NPHS1

Encoding nephrin

Causative gene for Finish type congenital NS

The first molecule on slit diaphragm
Milestones for Podocyte Molecular Study

- **NPHS1**: Molec. Cell, 1998
- **CD2AP**: Science, 2000
- **PLCE1**: Nature Genet., 2003
- **LAMB2**: Kidney Int., 2005
- **INF2**: Nature Genet., 2006
- **ACTN4**: Nature Genet., 2008
- **TRPC6**: Science, 2010
- **APOL1**: Nature Genet., 2011
- **DKGE**: Nature Genet., 2013
Podocyte genes associated with SRNS
Accurate diagnosis of SRNS

- Many single genes, more than 30
- Similar clinical features
 - Heavy proteinuria
 - Steroid resistance
 - Renal pathology: FSGS, DMS, MCD
 - Progression to ESRD
- Problems
 - Diversity of clinical and genetic findings
 - Application of steroid?
 - Recurrent after renal transplantation?
Accurate diagnosis of SRNS

- **Genetic testing**: a revolution on diagnosis for pediatric nephrologists
 - Accurate diagnosis
 - Precise genetic counseling
 - Appropriate therapy
 - Predict risk of post transplant recurrence
 - Better understanding of pathophysiology
 - Identify crucial molecular target, therapy
 - Clarify specific pathway, blockage
Suggested approach for genetic testing in SRNS

GENETICS OF STEROID-RESISTANT NEPHROTIC SYNDROME: A REVIEW OF MUTATION SPECTRUM AND SUGGESTED APPROACH FOR GENETIC TESTING

S Joshi (sjo@ki.au.dk), R Andersen, B Jespersen, S Rittig

1. Department of Clinical Medicine - The Department of Pediatrics, Research Laboratory-A, Aarhus University Hospital, Aarhus N, Denmark
2. Department of Clinical Medicine - The Department of Medicine and Nephrology C, Aarhus University Hospital, Aarhus N, Denmark

Keywords
Gene mutations, Genetic testing, Nephrotic syndrome, Podocyte, Steroid resistance

Correspondence
Shivani Joshi, Department of Clinical Medicine - The Department of Pediatrics, Research Laboratory-A, Aarhus University Hospital, Brendstrupgårdsvej 100, Aarhus N, 8200 Denmark.
Tel: +045 78451522
Email: sjo@ki.au.dk

ABSTRACT
Identification of genes, associated mutations and genotype-phenotype correlations in steroid-resistant nephrotic syndrome (SRNS) is being translated to clinical practice through genetic testing. This review provides an update on the genes and mutations associated with SRNS along with a suggested approach for genetic testing in patients with SRNS.

Conclusion: The number of identified genes associated with SRNS is increasing along with our understanding of their impact on treatment response and risk of recurrence. A systematic approach to genetic testing in patients with SRNS might aid the physician in selecting appropriate treatment.
Suggested approach for genetic testing in SRNS

- **Congenital onset**
 - Microcystic dialation of tubules and PMS
 - Yes: Genetic diagnosis, Stop
 - No: MCNS/FSGS
 - Yes: NPHS1
 - No: NPHS2
 - Yes: Genetic diagnosis, Stop
 - No: NPHS1
 - Yes: Genetic diagnosis, Stop
 - No: PLCE1*
 - Yes: Genetic diagnosis, Stop
 - No: Genetic diagnosis

- **Childhood onset**
 - DMS
 - Yes: Karyotype
 - No: MCNS/FSGS
 - Yes: NPHS2
 - No: WT1
 - Yes: Genetic diagnosis, PS
 - No: Genetic diagnosis
 - Yes: WT1*
 - No: Genetic diagnosis
 - Yes: PLCE1*
 - No: Genetic diagnosis
 - Yes: CD2AP*, INF2*, ACTN4*, TRPC6*
 - No: Genetic diagnosis
Targeted next generation sequencing is a cost-effective strategy

Simultaneously investigate all relevant genes
Friedhelm Hildebrandt, et al:
Multicenter Study

A Single-Gene Cause in 29.5% of Cases of Steroid-Resistant Nephrotic Syndrome

*Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts; †Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan; ‡Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut; §Institute of Child Health, University College London, London, United Kingdom; ¶Pediatric Nephrology Unit, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia; ‖Department of Human Genetics, Otto von Guericke University, Magdeburg, Germany; **Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany; ††Department of Pediatric Nephrology, Medical Faculty of the Charité, Berlin, Germany; ‡‡The Pediatric Nephrology Unit, Alexandria University, Alexandria, Egypt; §§Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt; ‖‖Egyptian Group for Orphan Renal Diseases, Cairo, Egypt; and ¶¶Howard Hughes Medical Institute, Chevy Chase, Maryland
an international cohort
- 1783 different families
- 2016 individuals
- SRNS
- 253 (14.1%) presented with congenital NS
all known 27 monogenes causing SRNS
- microfluidic multiplex PCR
- next-generation sequencing
Friedhelm Hildebrandt, et al: Multicenter Study
J Am Soc Nephrol, 2015

- Disease-causing mutations
 - 526 of 1783 families
 - 29.5% with monogenic mutation
- Mutations in 21 of the 27 known SRNS genes
 - 129 novel mutations (48 truncating alleles)
- Previously 1115 reported mutations
 - Human Gene Mutation Database (http://www.hgmd.org)
- An additional 11.6%
Large cohort study

- Most SRNS families from Europe and North America
- No patients from Russia, China, sub-Saharan Africa, or Pacific Rim countries
- 127/1783 (7%) families from India

- Is there a geographic or ethnic difference?
 - *NPHS2* mutation in Chinese children with SRNS, 4% vs 20%-30% in Europe

Nephrol Dial Transplant, 2005
A Multicenter Study for Chinese Children with SRNS

- Patients

- Inclusion criteria (at least one of two criteria):
 - SRNS
 - Isolated proteinuria + highly suspected genetic causes

- Exclusion criteria:
 - Age of onset of disease was more than 18 years
 - Diagnosed as Alport syndrome
A Multicenter Study for Chinese Children with SRNS

- Targeting next generation sequencing
- NGS detection included 28 genes
- 21 genes with autosomal recessive mode of inheritance
- 7 genes with autosomal dominant mode of inheritance
- To predict the functional significance of all variants
 - SIFT
 - PolyPhen
 - Condel
 - Mutation Taster
 - Sanger validation
A Multicenter Study for Chinese Children with SRNS

- 120 patients were included
 - SRNS: 110 cases
 - Isolated proteinuria: 10 cases
- From 5 centers
 - Beijing
 - Hangzhou
 - Fuzhou
 - Changsha
 - Guangzhou
Age and Causative Gene Distribution

<table>
<thead>
<tr>
<th>Age of onset</th>
<th>≤3 mo</th>
<th>4-12 mo</th>
<th>13 mo-5 yr</th>
<th>6-12 yr</th>
<th>13-17 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation detection rate</td>
<td>9/12 (75%)</td>
<td>6/18 (33.3%)</td>
<td>14/54 (25.9%)</td>
<td>5/34 (14.7%)</td>
<td>1/2 (50%)</td>
</tr>
<tr>
<td>Causative genes</td>
<td>WT1 NPHS1 ADCK4 LAMB2</td>
<td>TRPC6 WT1 NPHS1 PLCE1 COQ2</td>
<td>WT1 LMX1B NPHS2 CUBN ADCK4</td>
<td>ADCK4 SMARCAL1</td>
<td>ADCK4</td>
</tr>
</tbody>
</table>
Causative Gene Distribution among Different Ages

Age of onset

Percent patients with causative mutations detected

- **0-3 mo**
 - SMARCAL1
 - NPHS1
 - NPHS2
 - LAMB2
 - PLCE1
 - ADCK4
 - CUBN
 - COQ2
 - WT1
 - TRPC6
 - LMX1B

- **4-12 mo**
 - SMARCAL1
 - NPHS1
 - NPHS2
 - LAMB2
 - PLCE1
 - ADCK4
 - CUBN
 - COQ2
 - WT1
 - TRPC6
 - LMX1B

- **13 mo-5 yrs**
 - SMARCAL1
 - NPHS1
 - NPHS2
 - LAMB2
 - PLCE1
 - ADCK4
 - CUBN
 - COQ2
 - WT1
 - TRPC6
 - LMX1B

- **6-12 yrs**
 - SMARCAL1
 - NPHS1
 - NPHS2
 - LAMB2
 - PLCE1
 - ADCK4
 - CUBN
 - COQ2
 - WT1
 - TRPC6
 - LMX1B

- **13-17 yrs**
 - SMARCAL1
 - NPHS1
 - NPHS2
 - LAMB2
 - PLCE1
 - ADCK4
 - CUBN
 - COQ2
 - WT1
 - TRPC6
 - LMX1B
Comparison of causative genes: China vs others

<table>
<thead>
<tr>
<th>Causative gene</th>
<th>Hildebrandt study-1783 cases</th>
<th>Our study-120 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPHS2</td>
<td>177 (9.93%)</td>
<td>4 (3.33%)</td>
</tr>
<tr>
<td>NPHS1</td>
<td>131 (7.34%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>WT1</td>
<td>85 (4.77%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>PLCE1</td>
<td>37 (2.17%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LAMB2</td>
<td>20 (1.12%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>TRPC6</td>
<td>9 (0.53%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>CUBN</td>
<td>5 (0.28%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>COQ2</td>
<td>4 (0.22%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LMX1B</td>
<td>4 (0.22%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>ADCK4</td>
<td>3 (0.17%)</td>
<td>8 (6.67%)</td>
</tr>
<tr>
<td>SMARCAL1</td>
<td>16 (0.89%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>Others</td>
<td>35 (1.96%)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>526 (29.5%)</td>
<td>35 (29.2%)</td>
</tr>
</tbody>
</table>

J Am Soc Nephrol, 2015
Comparison of causative genes: China vs others

<table>
<thead>
<tr>
<th>Causative gene</th>
<th>Hildebrandt study-1783 cases</th>
<th>Our study-120 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPHS2</td>
<td>177 (9.93%)</td>
<td>4 (3.33%)</td>
</tr>
<tr>
<td>NPHS1</td>
<td>131 (7.34%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>WT1</td>
<td>85 (4.77%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>PLCE1</td>
<td>37 (2.17%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LAMB2</td>
<td>20 (1.12%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>TRPC6</td>
<td>9 (0.53%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>CUBN</td>
<td>5 (0.28%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>COQ2</td>
<td>4 (0.22%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LMX1B</td>
<td>4 (0.22%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>ADCK4</td>
<td>3 (0.17%)</td>
<td>8 (6.67%)</td>
</tr>
<tr>
<td>SMARCAL1</td>
<td>16 (0.89%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>Others</td>
<td>35 (1.96%)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>526 (29.5%)</td>
<td>35 (29.2%)</td>
</tr>
</tbody>
</table>

J Am Soc Nephrol, 2015
Comparison of causative genes: China vs others

<table>
<thead>
<tr>
<th>Causative gene</th>
<th>Hildebrandt study-1783 cases</th>
<th>Our study-120 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPHS2</td>
<td>177 (9.93%)</td>
<td>4 (3.33%)</td>
</tr>
<tr>
<td>NPHS1</td>
<td>131 (7.34%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>WT1</td>
<td>85 (4.77%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>PLCE1</td>
<td>37 (2.17%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LAMB2</td>
<td>20 (1.12%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>TRPC6</td>
<td>9 (0.53%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>CUBN</td>
<td>5 (0.28%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>COQ2</td>
<td>4 (0.22%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LMX1B</td>
<td>4 (0.22%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>ADCK4</td>
<td>3 (0.17%)</td>
<td>8 (6.67%)</td>
</tr>
<tr>
<td>SMARCAL1</td>
<td>16 (0.89%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>Others</td>
<td>35 (1.96%)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>526 (29.5%)</td>
<td>35 (29.2%)</td>
</tr>
</tbody>
</table>
Comparison of causative genes: China vs others

<table>
<thead>
<tr>
<th>Causative gene</th>
<th>Hildebrandt study-1783 cases</th>
<th>Our study-120 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPHS2</td>
<td>177 (9.93%)</td>
<td>4 (3.33%)</td>
</tr>
<tr>
<td>NPHS1</td>
<td>131 (7.34%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>WT1</td>
<td>85 (4.77%)</td>
<td>7 (5.83%)</td>
</tr>
<tr>
<td>PLCE1</td>
<td>37 (2.17%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LAMB2</td>
<td>20 (1.12%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>TRPC6</td>
<td>9 (0.53%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>CUBN</td>
<td>5 (0.28%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>COQ2</td>
<td>4 (0.22%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>LMX1B</td>
<td>4 (0.22%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>ADCK4</td>
<td>3 (0.17%)</td>
<td>8 (6.67%)</td>
</tr>
<tr>
<td>SMARCAL1</td>
<td>16 (0.89%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>Others</td>
<td>35 (1.96%)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>526 (29.5%)</td>
<td>35 (29.2%)</td>
</tr>
</tbody>
</table>

Comparison of causative genes: China vs others

Percent of patients with molecular diagnosis

- NPHS2: Hildebrandt's study (9.00%), Our study (9.00%)
- NPHS1: Hildebrandt's study (9.00%), Our study (9.00%)
- WT1: Hildebrandt's study (9.00%), Our study (9.00%)
- PLCE1: Hildebrandt's study (9.00%), Our study (9.00%)
- LAMB2: Hildebrandt's study (9.00%), Our study (9.00%)
- TRPC6: Hildebrandt's study (9.00%), Our study (9.00%)
- CUBN: Hildebrandt's study (9.00%), Our study (9.00%)
- COQ2: Hildebrandt's study (9.00%), Our study (9.00%)
- LMX1B: Hildebrandt's study (9.00%), Our study (9.00%)
- ADCK4: Hildebrandt's study (9.00%), Our study (9.00%)
- SMARCAL1: Hildebrandt's study (9.00%), Our study (9.00%)
- Others: Hildebrandt's study (9.00%), Our study (9.00%)

Hildebrandt's study vs Our study

Korkmaz study

ADCK4 mutations were found in 10 patients among 534 SRNS cases (1.9%)

<table>
<thead>
<tr>
<th></th>
<th>ADCK4 SRNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>26</td>
</tr>
<tr>
<td>Age at first reported manifestation, years</td>
<td>14.1 (10.8–17.0)</td>
</tr>
<tr>
<td>Histopathological diagnosis</td>
<td></td>
</tr>
<tr>
<td>FSGS/global glomerulosclerosis</td>
<td>61.5%</td>
</tr>
<tr>
<td>Diffuse mesangial sclerosis</td>
<td>0</td>
</tr>
<tr>
<td>Mesangioproliferative GN</td>
<td>0</td>
</tr>
<tr>
<td>Minimal change GN</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
<tr>
<td>No data/ not performed</td>
<td>38.5%</td>
</tr>
</tbody>
</table>
Conclusion

Children with Steroid Resistant Nephrotic Syndrome

- Genetic testing is important
 - Making therapeutic strategy
 - Predict the recurrent risk for renal transplantation

- Genetic testing strategy for Chinese children with SRNS
 - *ADCK4* was the most frequent causative gene
 - Experimental treatment with coenzyme Q10 may be tried
 - *NPHS2* mutations was lower than reported previously
Acknowledgement

Grants
- Ministry of Science and Technology
- National Nature Science Foundation of China
- National Nature Science Foundation of Beijing

Colleagues and Collaborators
- Jianhua Mao, Hangzhou
- Zihua Yu, Fuzhou
- Zhuwen Yi, Changsha
- Li Yu, Guangzhou
- Jie Ding, Yanqin Zhang, Fangrui Ding, Hongwen Zhang, Xiaoyu Liu, Huijie Xiao, Yong Yao, Xuhui Zhong, Jingcheng Liu, Lixia Yu

Patients and their families
THANK YOU